首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   20篇
  国内免费   1篇
  2023年   3篇
  2021年   3篇
  2019年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
41.
Abstract Phospholipid fatty acid (PLFA) profiles were measured in soils from organic, low-input, and conventional farming systems that are part of the long term Sustainable Agriculture Farming Systems (SAFS) Project. The farming systems differ in whether their source of fertilizer is mineral or organic, and in whether a winter cover crop is grown. Sustained increases in microbial biomass resulting from high organic matter inputs have been observed in the organic and low-input systems. PLFA profiles were compared to ascertain whether previously observed changes in biomass were accompanied by a change in the composition of the microbial community. In addition, the relative importance of environmental variables on PLFA profiles was determined. Redundancy analysis ordination showed that PLFA profiles from organic and conventional systems were significantly different from April to July. On ordination plots, PLFA profiles from the low-input system fell between organic and conventional systems on most sample dates. A group of fatty acids (i14:0, a15:0, 16:1ω7c, 16:1ω5c, 14:0, and 18:2ω6c) was enriched in the organic plots throughout the sampling period, and another group (10Me16:0, 2OH 16:1 and 10Me17:0) was consistently lower in relative abundance in the organic system. In addition, another group (15:0, a17:0, i16:0, 17:0, and 10Me18:0) was enriched over the short term in the organic plots after compost incorporation. The relative importance of various environmental variables in governing the composition of microbial communities could be ranked in the order: soil type > time > specific farming operation (e.g., cover crop incorporation or sidedressing with mineral fertilizer) > management system > spatial variation in the field. Measures of the microbial community and soil properties (including microbial biomass carbon and nitrogen, substrate induced respiration, basal respiration, potentially mineralizable nitrogen, soil nitrate and ammonium, and soil moisture) were seldom associated with the variation in the PLFA profiles. Received: 3 February 1997; Accepted: 7 August 1997  相似文献   
42.
43.
The murid rodent subfamily Sigmodontinae contains 79 genera which are distributed throughout the New World. The time of arrival of the first sigmodontines in South America and the estimated divergence time(s) of the different lineages of South American sigmodontines have been controversial due to the lack of a good fossil record and the immense number of extant species. The "early-arrival hypothesis" states that the sigmodontines must have arrived in South America no later than the early Miocene, at least 20 MYA, in order to account for their vast present-day diversity, whereas the "late-arrival hypothesis" includes the sigmodontines as part of the Plio-Pleistocene Great American Interchange, which occurred approximately 3.5 MYA. The phylogenetic relationships among 33 of these genera were reconstructed using mitochondrial DNA (mtDNA) sequence data from the ND3, ND4L, arginine tRNA, and ND4 genes, which we show to be evolving at the same rate. A molecular clock was calibrated for these genes using published fossil dates, and the genetic distances were estimated from the DNA sequences in this study. The molecular clock was used to estimate the dates of the South American sigmodontine origin and the main sigmodontine radiation in order to evaluate the "early-" and "late-arrival" scenarios. We estimate the time of the sigmodontine invasion of South America as between approximately 5 and 9 MYA, supporting neither of the scenarios but suggesting two possible models in which the invading lineage was either (1) ancestral to the oryzomyines, akodonts, and phyllotines or (2) ancestral to the akodonts and phyllotines and accompanied by the oryzomyines. The sigmodontine invasion of South America provides an example of the advantage afforded to a lineage by the fortuitous invasion of a previously unexploited habitat, in this case an entire continent.   相似文献   
44.
When microbes evolve in a continuous, nutrient-limited environment, natural selection can be predicted to favor genetic changes that give cells greater access to limiting substrate. We analyzed a population of baker's yeast that underwent 450 generations of glucose-limited growth. Relative to the strain used as the inoculum, the predominant cell type at the end of this experiment sustains growth at significantly lower steady-state glucose concentrations and demonstrates markedly enhanced cell yield per mole glucose, significantly enhanced high-affinity glucose transport, and greater relative fitness in pairwise competition. These changes are correlated with increased levels of mRNA hybridizing to probe generated from the hexose transport locus HXT6. Further analysis of the evolved strain reveals the existence of multiple tandem duplications involving two highly similar, high- affinity hexose transport loci, HXT6 and HXT7. Selection appears to have favored changes that result in the formation of more than three chimeric genes derived from the upstream promoter of the HXT7 gene and the coding sequence of HXT6. We propose a genetic mechanism to account for these changes and speculate as to their adaptive significance in the context of gene duplication as a common response of microorganisms to nutrient limitation.   相似文献   
45.
An area of intense scientific and practical interest is the biogeochemical and microbial processes determining the success of natural attenuation, biostimulation and/or bioaugmentation treatments for organic contaminants in groundwater. Recent studies in this area have focused on the reductive dechlorination of chlorinated solvents, the degradation of the fuel additive methyl tert-butyl ether, and the removal of long-term hydrocarbon contamination. These studies have been facilitated by the use of stable isotope analysis to demonstrate in situ bioremediation and push-pull tests, in which isotopes are injected into aquifers and then quickly retrieved and analyzed, to measure in situ activity. Molecular tools such as quantitative PCR, the detection of mRNA expression, and numerous DNA fingerprinting methods have also proved valuable, being employed to identify and sometimes quantify environmentally important organisms or changes in communities. Methods to track bacteria and tools to characterize bacterial attachment properties have also offered insight into bacterial transport in situ.  相似文献   
46.
Biodegradation of methyl tert-butyl ether by a bacterial pure culture.   总被引:8,自引:0,他引:8  
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 x 10(6) cells ml(-1) were 0.07, 1.17, and 3.56 microg ml(-1) h(-1) for initial concentrations of 5, 50, and 500 microg MTBE ml(-1), respectively. When incubated with 20 microg of uniformly labeled [(14)C]MTBE ml(-1), strain PM1 converted 46% to (14)CO(2) and 19% to (14)C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 mg of cells mg MTBE(-1). Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 microg of MTBE ml(-1) added to the core material. The rate of MTBE removal increased with additional inputs of 20 microg of MTBE ml(-1). These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.  相似文献   
47.
Spatial and temporal variations in sediment microbial community structure in a eutrophic lake polluted with inorganic mercury were identified using polar lipid fatty acid (PLFA) analysis. Microbial community structure was strongly related to mercury methylation potential, sediment organic carbon content, and lake location. Pore water sulfate, total mercury concentrations, and organic matter C/N ratios showed no relationships with microbial community structure. Seasonal changes and changes potentially attributable to temperature regulation of bacterial membranes were detectable but were less important influences on sediment PLFA composition than were differences due to lake sampling location. Analysis of biomarker PLFAs characteristic of Desulfobacter and Desulfovibrio groups of sulfate-reducing bacteria suggests that Desulfobacter-like organisms are important mercury methylators in the sediments, especially in the Lower Arm of Clear Lake.  相似文献   
48.
Translocations for conservation often involve species limited to relict distributions. However, uncertainty can exist regarding the ability of source individuals to acclimatise following a shift to a distant location. We investigated the ability of captive-reared juvenile tuatara (Sphenodon punctatus) of Cook Strait stock (41°S) to adjust to outdoor, predator-protected pens within Orokonui Ecosanctuary (45 °S). We examined potential basking and within burrow temperatures, the influence of temperature on emergence, and growth rates in comparison with other locations. Tuatara at Orokonui reached their preferred temperature when basking over summer, and burrows provided protection from freezing over winter. Emergence was temperature-dependent and essentially ceased during winter. Growth rates of Orokonui-held juveniles were within the range for four other captive-rearing facilities and faster than for wild juveniles from a Cook Strait population. As all Orokonui-held juveniles have survived and grown we conclude that the climate at this southern location is suitable to consider a free-release.  相似文献   
49.
Nanoscale magnetic/luminescent core-shell particles were used for DNA quantification in a hybridization-in-solution approach. We demonstrated a rapid, simple, and non-polymerase chain reaction-based DNA hybridization-in-solution assay for quantifying bacteria capable of biodegrading methyl tertiary-butyl ether. Fe3O4/Eu:Gd2O3 core-shell nanoparticles synthesized by spray pyrolysis were biofunctionalized with NeutrAvidin. Following immobilization of a biotinylated probe DNA on the particles' surfaces via passive adsorption, target DNA labeled with fluorescein isothiocyanate was hybridized with probe DNA. The hybridized DNA complex was separated from solution with a magnet, while nonhybridized DNA remained in solution. The normalized fluorescence (fluorescein isothiocyanate/nanoparticles) measured with a spectrofluorometer indicated a linear quantification (R(2)=0.98) of the target bacterial 16 S rDNA. The rate of hybridization increased concurrently with the target DNA concentration. In addition, this approach differentiated between the signal outputs from perfectly complementary target and two-base mismatched target DNA in a range of concentrations, showing the specificity of the assay and the possibility for environmental applications.  相似文献   
50.
Increasing soil organic carbon (SOC) via organic inputs is a key strategy for increasing long‐term soil C storage and improving the climate change mitigation and adaptation potential of agricultural systems. A long‐term trial in California's Mediterranean climate revealed impacts of management on SOC in maize‐tomato and wheat–fallow cropping systems. SOC was measured at the initiation of the experiment and at year 19, at five depth increments down to 2 m, taking into account changes in bulk density. Across the entire 2 m profile, SOC in the wheat–fallow systems did not change with the addition of N fertilizer, winter cover crops (WCC), or irrigation alone and decreased by 5.6% with no inputs. There was some evidence of soil C gains at depth with both N fertilizer and irrigation, though high variation precluded detection of significant changes. In maize?tomato rotations, SOC increased by 12.6% (21.8 Mg C/ha) with both WCC and composted poultry manure inputs, across the 2 m profile. The addition of WCC to a conventionally managed system increased SOC stocks by 3.5% (1.44 Mg C/ha) in the 0–30 cm layer, but decreased by 10.8% (14.86 Mg C/ha) in the 30–200 cm layer, resulting in overall losses of 13.4 Mg C/ha. If we only measured soil C in the top 30 cm, we would have assumed an increase in total soil C increased with WCC alone, whereas in reality significant losses in SOC occurred when considering the 2 m soil profile. Ignoring the subsoil carbon dynamics in deeper layers of soil fails to recognize potential opportunities for soil C sequestration, and may lead to false conclusions about the impact of management practices on C sequestration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号